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Série 5

Exercice 1. 1. Si φ(−1)({h}) est vide, alors nous n’avons rien faire, supposons
donc qu’il existe g0 ∈ G tel que φ(g0) = h c’est a dire : g0 ∈ φ(−1)({h}) et
montrons que

φ(−1)({h}) = g0 ⋆ ker(φ)

— Tout d’abord on observe que ∀g ∈ g0 ⋆ ker(φ), il existe un k ∈ ker(φ) tel
que g = g0 ⋆ k, ainsi en utilisant le fait que φ est un morphisme de groupe,
on obtient :

φ(g) = ϕ(g0 ⋆ k) = ϕ(g0) · φ(k) = h · eH = h

Donc g ∈ φ(−1)({h}) et par consequent φ(−1)({h}) ⊇ g0 ⋆ ker(φ).

— Maintenant prenons g ∈ φ(−1)({h}), on peut ecrire g = eg ⋆g = g0⋆g
(−1)
0 ⋆g

et on voit que g
(−1)
0 ⋆ g appartient a kerφ, en effet :

φ(g
(−1)
0 ⋆ g) = φ(g

(−1)
0 ) · φ(g) = φ(g0)

(−1) · φ(g) = h(−1) · h = eH

Donc g = g0⋆g
(−1)
0 ⋆g est bien un element de g0⋆ker(φ), ainsi φ

(−1)({h}) ⊆
g0 ⋆ ker(φ)

Par double inclusion, on a bien montre que φ(−1)({h}) = g0 ⋆ ker(φ).

2. — Tout d’abord on observe que ∀g ∈ ker(φ) ⋆ g0, il existe un k ∈ ker(φ) tel
que g = k ⋆ g0, on retrouve ainsi :

φ(g) = ϕ(k) · φ(g0) = h · eH = h

Donc g ∈ φ(−1)({h}) et par consequent φ(−1)({h}) ⊇ ker(φ) ⋆ g0.

— Maintenant prenons g ∈ φ(−1)({h}),cette fois-ci en ecrivant g = g⋆g
(−1)
0 ⋆g0

on a egalement :

φ(g ⋆ g
(−1)
0 ) = φ(g) · φ(g(−1)

0 ) = h · h(−1) = eH

Donc g est bien un element de ker(φ) ⋆ g0, ainsi φ
(−1)({h}) ⊆ ker(φ) ⋆ g0

Par double inclusion, on a bien montre que φ(−1)({h}) = ker(φ) ⋆ g0.



3. On a montre au point 1. et 2. que si g0 ∈ φ(−1)({h}) alors on a bien que :

φ−1({h}) = g0 ⋆ ker(φ) = φ−1({h}) = ker(φ) ⋆ g0

Maintenant, si g0 /∈ φ(−1)({h}), alors il existe un h′ ∈ H tel que φ(g0) = h
′ ̸= h.

Si on considere g = g0⋆eG ∈ g0⋆kerφ (car eG est toujours un element du ker) on
a que g = g0 /∈ φ(−1)({h}) donc les egalite precedantes ne sont pas respectees.
Ainsi l’ensemble de tous les g0 ∈ G respectant les proprietes demandees est
φ(−1)({h}).

Action de groupes

Soit X un ensemble, G un groupe et soit G ↷ X une action a gauche de G sur X.
On representera (comme on prefere) cette action, soit sous la forme d’un morphisme

φ : G 7→ Bij(X),

soit sous la forme d’une loi de composition externe

⊙ : (g, x) ∈ G×X 7→ g ⊙ x ∈ X

verifiant les proprietes convenables.

Exercice 2. Soit x ∈ X, la G-orbite de x est le sous-ensemble des transformes de x
par les elements de G :

G⊙ x = {g ⊙ x, g ∈ G} ⊂ X.

On dit que x′ est dans la G-orbite de x ssi

il existe g ∈ G, tel que x′ = g ⊙ x(= φ(g)(x))

ou en d’autre termes ssi
x′ ∈= G⊙ x (= φ(G)(x)).

On note cette relation
x′ ∼G x

1. On note par R ⊂ X ×X la relation

R = {(x, x′) ∈ X ×X : ∃g ∈ Gx′ = φ(g)(x)}.

et on verifie que c’est bien une relation d’ equivalence :



— Reflexivité : Soit x ∈ X. Comme φ : G → Bij(X) est un morphisme, on a
φ(eG) = IdX , Donc

x = IdX(x) = φ(eG)(x)

et donc (x, x) ∈ R.

— Symmetrie : Soit (x, x′) ∈ R. Donc il existe par définition g ∈ G tel que
x′ = φ(g)(x). Par conséquent

x = φ(eG)(x) = φ(g−1g)(x) =
(
φ(g−1) ◦ φ(g)

)
(x)

= φ(g−1)
(
φ(g)(x)

)
= φ(g−1)(x′)

et donc (x′, x) ∈ R.

— Transitivité : Soit (x, x′), (x′, x′′) ∈ R. Par conséquent il existe g, g′ ∈ G
tel que x′ = φ(g)(x) et x′′ = φ(g′)(x′). On déduit

x′′ = φ(g′)(x′) = φ(g′)
(
φ(g)(x)

)
=

(
φ(g′) ◦ φ(g)

)
(x)

= φ(g′g)(x).

Ainsi R est bien une relation d’ equivalence.

2. Soit x ∈ X, on va montrer que Gx = {g ∈ G, φ(g)(x) = g⊙ x = x} ⊂ G est un
sous-groupe de G :

— D’abord, on voit que Gx n’est pas vide, en effet, eG ∈ Gx car ∀y ∈ X, on
a φ(eG)(y) = IdX(y) = y en particulierφ(g)(x) = x.

— Soient g, h ∈ Gx alors :

φ(g ⋆ h)(x) = φ(g) ◦ φ(h)(x) = φ(g)(x) = x

Donc g ⋆ h ∈ Gx. (On a utilise dans la premiere egalite le fait que φ est
un morphisme, dans la deuxieme, le fait que h ∈ Gx et dans la derniere le
fait que g ∈ Gx.)

— Soit g ∈ Gx, alors comme φ(g) ∈ Bij(X) et que φ est un morphisme , on
a que φ(g(−1)) ◦ φ(g) = φ(g)(−1)φ(g) = IdX , ainsi :

φ(g(−1))(x) = φ(g(−1))φ(g)(x) = IdX(x) = x

Donc g(−1) ∈ Gx.

Ainsi on a montre que Gx est bien un sous groupe de G.

3. Soient x, x′ ∈ X tel que x, x′ ∈ G⊙y, ainsi, comme R est une relation d’equiva-
lence, on peut supposer sans perte de generalite que x′ ∈ G ⊙ x ainsi, il existe
g ∈ G tel que x′ = φ(g)(x) = g ⊙ x.



— Soit h ∈ Gx′ , i-e φ(h)(x′) = x′, alors on peut ecrire h = g⋆g(−1)⋆h⋆g⋆g(−1),
montrons que g′ = g(−1) ⋆ h ⋆ g ∈ Gx, ainsi on aura h = g ⋆ g′ ⋆ g(−1) ∈
g ⋆ Gx ⋆ g

(−1) :

φ(g(−1)⋆h⋆g)(x) = φ(g(−1))◦φ(h)◦φ(g)(x) = φ(g(−1))◦φ(h)(x′) = φ(g(−1))(x′) = x

On a donc bien que g′ = g(−1)⋆h⋆g ∈ Gx. ( La derniere egalite viens du fait
que φ(g) est une bijection tel que φ(g)(x) = x′, ainsi comme φ(g(−1)) =
φ(g)(−1) est son inverse, on a bien que φ(g(−1))(x′) = x. )
On vient de montrer que Gx′ ⊆ g ⋆ Gx ⋆ g

(−1).

— Soit h = g ⋆ h′ ⋆ g(−1) ∈ g ⋆ Gx ⋆ g
(−1), i-e h′ ∈ Gx, montrons que h ∈ Gx′ :

φ(h)(x′) = φ(g) ◦ φ(h′) ◦ φ(g(−1)(x′) = φ(g) ◦ φ(h′)(x) = φ(g)(x) = x′

Ainsi on a On vient de montrer que Gx′ ⊇ g ⋆ Gx ⋆ g
(−1).

Par double inclusion on a bien que Gx′ = g ⋆ Gx ⋆ g
(−1).

4. On ecrit

σ =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
Calculons donc l’orde σ :

σ2 =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
◦
(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
=

=

(
1 2 3 4 5 6 7
5 2 1 4 3 6 7

)
σ3 =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
◦
(
1 2 3 4 5 6 7
5 2 1 4 3 6 7

)
=

=

(
1 2 3 4 5 6 7
1 7 3 6 5 4 2

)
σ4 =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
◦
(
1 2 3 4 5 6 7
1 7 3 6 5 4 2

)
=

=

(
1 2 3 4 5 6 7
3 2 5 4 1 6 7

)
σ5 =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
◦
(
1 2 3 4 5 6 7
3 2 5 4 1 6 7

)
=

=

(
1 2 3 4 5 6 7
5 7 1 6 3 4 2

)



σ6 =

(
1 2 3 4 5 6 7
3 7 5 6 1 4 2

)
◦
(
1 2 3 4 5 6 7
5 7 1 6 3 4 2

)
=

=

(
1 2 3 4 5 6 7
1 2 3 4 5 6 7

)
= Id

Ainsi nσ = 6.

5. On remarque que l’on peut decomposer σ en trois cycles σ1, σ2, σ3 tel que si on
ecrit Di = {x ∈ X;σi(x) ̸= x} pour i = 1, 2, 3 alors on a que D1, D2 et D3 sont
deux a deux disjoints, en effet :

σ = σ1◦σ2◦σ3 =
(
1 2 3 4 5 6 7
3 2 5 4 1 6 7

)
◦
(
1 2 3 4 5 6 7
1 7 3 4 5 6 2

)
◦
(
1 2 3 4 5 6 7
1 2 3 6 5 4 7

)
Ainsi on peut facilement voir que

G(1) = G(3) = G(5) = {σn(1);n = 1, ..., 5} = {1, 3, 5}

G(2) = G(7) = {σn(2);n = 1, ..., 5} = {2, 7}

G(4) = G(6) = {σn(4);n = 1, ..., 5} = {4, 6}

Ou G(i) avec i ∈ X est l’orbite de i. Cela nous donne donc la decomposition
suivante de X = G(1) ⊔G(2) ⊔G(4)

6. En reprenant nos calcul de la question 4, on trouve que

G1 = G3 = G5 = {Id, σ3}

G2 = G7 = {Id, σ2, σ4}

G4 = G6 = {Id, σ2, σ4}

Ainsi on a n1 = 2 et n2 = n4 = 3 ou ni est l’ordre de Gi, i = 1, 2, ..., 7.

Exercice 3. 1. On commence par montrer que t• est bien definie c’est a dire que
pour tout g ∈ G l’application tg est bien une bijection. Soit h1, h2 ∈ G tel que
tg(h1) = tg(h2). Alors on a

h1 = g(−1).g.h1 = g−1.tg(h1) = g−1.tg(h2) = g−1.g.h2 = h2,

ce qui montre l’injectivité de tg.



Soit h ∈ G arbitraire. Donc

h = g.(g−1.h) = tg(g
−1.h)

ce qui montre la surjectivité de tg.

Comme g ∈ G ést arbitraire, on en déduit que pour tout g ∈ G l’application tg
est une bijection. Montrons maintenant que t• est un morphisme de groupe :
Soient g, h,∈ G. On veut montrer que e tg.h = tg ◦ th. Pour cela, on considere
x ∈ G quelconque et grâce à l’associativité de la composition interne dans G,
on a :

tg.h(x) = (g.h).x = g.(h.x) = tg(h.x) = tg
(
th(x)

)
= (tg ◦ th)(x).

Comme x ∈ G ést arbitraire, on en déduit que tg.h = tg ◦ th. On en déduit que
t• est un morphisme.

2. Soit g ∈ G tel que tg = IdG. Donc

g = g.eG = tg(eG) = Id(eG) = eG

Donc on a montré que ker(t•) ⊂ {eG}. Comme t• est un morphisme, sait que
teG = IdG et on déduit que ker(t•) = {eG} et donc que t• est bien injectif.

Exercice 4. On rappelle que si ψ : G → H et ψ′ : H → K deux morphismes de
groupes bijectif , alors ψ(−1) : H → G et ψ′ ◦ ψ : G → K sont aussi des morphismes
de groupes bijectifs.

1. Montrons que ≃ est une relation d’equivalence :

(a) Reflexivite : Pour un groupe G on a G ≃ G en considerant l’isomorphisme
IdG : G→ G.

(b) Symetrie : Soient G,H deux groupes tel que G ≃ H donc il existe ψ : G→
H un isomorphisme, comme ψ est un isomorphisme, on peut considerer
ψ(−1) : H → G qui est aussi un isomorphisme et ainsi, on a bien H ≃ G.

(c) Transitivite : Soient G,H,K trois groupes, tel que G ≃ H et H ≃ K via
ψ : G → H et ψ′ : H → K respectivement, alors comme ψ′ ◦ ψ : G → K
est aussi un isomorphisme, on a bien G ≃ K.

2. On pose :

θ : AutGr(G) → Bij(IsomGr(G,H))

φ 7−→ θφ : IsomGr(G,H) → IsomGr(G,H)

ψ 7→ θφ = ψ ◦ φ

Et on verifie que cela definie une action a droite :

(a) Neutralite : Pour tout ψ ∈ IsomGr(G,H), on a bien θIdG(ϕ) = ϕ ◦ IdG = ψ



(b) Associativite : Soient φ1, φ2 ∈ AutGr(G), et ψ ∈ IsomGr(G,H), on a bien :

θφ1◦φ2(ψ) = ψ ◦ φ1 ◦ φ2 = θφ2(ψ ◦ φ1) = θφ2 ◦ θφ1(ψ)

(c) Simplification : Soient φ ∈ AutGr(G), et ψ ∈ IsomGr(G,H), on a bien :

θφ(θφ(−1)(ψ)) = ψ ◦ φ(−1) ◦ φ = ψ = ψ ◦ φ ◦ φ(−1) = θφ(−1)(θφ(ψ))

C’est donc bien une action a droite.
On observe que pour G un groupe et X un ensemble tel que α : G → Bij(X)
est une action a droite de G sur X, alors si on definie α(−1) comme suivant :

α(−1) : G→ Bij(X)

g 7−→ α(−1)(g) : X → X

x 7→ α(−1)(g)(x) = α(g(−1))(x)

Alors α(−1) est une action a gauche de G sur X, en effet :

(a) Neutralite : Pour tout x ∈ X : α(−1)(eG)(x) = α(e
(−1)
G )(x) = α(eG)(x) = x.

(b) Associativite : Soient g, g′ ∈ G et x ∈ X, alors en utilisant le fait que α
est une action a droite, on obtient :

α(−1)(g.g′)(x) = α((g.g′)(−1))(x) = α((g′)(−1).g(−1))(x) =

α(g(−1)) ◦ α((g′)(−1))(x) =

α(−1)(g) ◦ α(−1)(g′)(x)

(c) Simplification : Soient g,∈ G et x ∈ X, alors en utilisant le fait que α est
une action a droite, on obtient facilement que la simplification est aussi
satisfaite !

On peut aussi montrer que si α est une action a gauche, alors α(−1) est une
action a droite. Ainsi dans notre cas, θ(−1) est une action a gauche de AutGr(G)
sur IsomGr(G,H). Cette action est definie pour tout φ ∈ AutGr(G), et ψ ∈
IsomGr(G,H) comme θ(−1)(φ)(ψ) = ψ ◦ φ(−1).

3. On pose :

θ : AutGr(H) → Bij(IsomGr(G,H))

φ 7−→ θφ : IsomGr(G,H) → IsomGr(G,H)

ψ 7→ θφ = φ ◦ ψ



et

θ(−1) : AutGr(H) → Bij(IsomGr(G,H))

φ 7−→ θ(−1)
φ : IsomGr(G,H) → IsomGr(G,H)

ψ 7→ θ(−1)
φ = φ(−1) ◦ ψ

On peut verifie de la meme maniere qu’au point precedant que θ est une action
gauche et que par consequent θ(−1) est une action a droite.

4. Soit ψ ∈ IsomGr(G,H) un isomorphisme. on va montrer que

IsomGr(G,H) = ψ ◦ AutGr(G) = AutGr(H) ◦ ψ

En procedant par double inclusion.
D’abord, on observe que comme ψ ∈ IsomGr(G,H), alors trivialement on a
que ψ ◦ AutGr(G) ⊆ IsomGr(G,H) et AutGr(H) ◦ ψ ⊆ IsomGr(G,H) car la
composition de deux isomorphisme de groupe est toujours un isomorphisme de
groupes. Ensuite nous avons :

(a) IsomGr(G,H) ⊆ ψ◦AutGr(G) : Soit ϕ ∈ IsomGr(G,H) alors, ϕ = ψ◦ψ(−1)◦
ϕ et on a bien ψ(−1) ◦ϕ ∈ AutGr(G) donc ϕ = ψ ◦ψ(−1) ◦ϕ ∈ ψ ◦AutGr(G).
Ce qui montre que

IsomGr(G,H) ⊆ ψ ◦ AutGr(G)

(b) IsomGr(G,H) ⊆ AutGr(H)◦ψ : Soit ϕ ∈ IsomGr(G,H) alors, ϕ = ϕ◦ψ(−1)◦
ψ et on a bien ϕ◦ψ(−1) ∈ AutGr(H) donc ϕ = ψ◦ψ(−1) ◦ϕ ∈ AutGr(H)◦ψ.
Ce qui montre que

IsomGr(G,H) ⊆ AutGr(H) ◦ ψ

Ce qui montre bien les egalites voules.

Premiers exercices sur les anneaux

Exercice 5. 1. Montrons que les seuls sous-anneaux de Z sont {0} ou Z.
Fixons A un sous-anneau non-nul de Z. Comme, A est non nul, par definition,
1 ∈ A, et donc, vu que A est un sous-groupe additif de Z, il contient le sous-
groupe genere par 1, qui est donc Z.

2. Montrons que les seuls anneaux de Z/qZ sont {0 (mod q)} et Z/qZ.
Fixons A un sous-anneau non-nul de Z/qZ. Comme, A est non nul, par defini-
tion, 1 (mod q) ∈ A, et donc, vu que A est un sous-groupe additif de Z/qZ, il
contient le sous-groupe genere par 1 (mod q), qui est donc Z/qZ.



Exercice 6. Soit A un anneau commutatif. Soit l’ensemble

M2(A) = {
(
a b
c d

)
, a, b, c, d ∈ A}

des matrices 2× 2 a coefficients dans A. On muni cet ensemble des lois d’addition et
de multiplication des matrices(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
,

(
a b
c d

)
.

(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
1. Verifions que M2(A) est un anneau d’element nul la matrice nulle

02(A) =

(
0A 0A
0A 0A

)
et d’unite la matrice identite

Id2 =

(
1A 0A
0A 1A

)
.

En premier on montre que (M2(A),+, 02) est un groupe commutatif.

— Neutralité de 02 : Soit

(
a b
c d

)
∈M2 arbitraire. On a(

0A 0A
0A 0A

)
+

(
a b
c d

)
=

(
0A + a 0A + b
0A + c 0A + d

)
=

(
a b
c d

)
=

(
a b
c d

)
+

(
0A 0A
0A 0A

)
Ici on a utilisé la neutralité de 0A dans A.

— Inversibilité : Soit

(
a b
c d

)
∈M2 arbitraire. L’inverse est

(
−a −b
−c −d

)
∈M2

car(
−a −b
−c −d

)
+

(
a b
c d

)
=

(
−a+ a −b+ b
−c+ c −d+ d

)
=

(
0A 0A
0A 0A

)
=

(
a b
c d

)
+

(
−a −b
−c −d

)
Ici on a utilisé l’inversiblilité de + dans A.

— Associativité : Soient

(
a b
c d

)
,

(
a′ b′

c′ d′

)
,

(
a′′ b′′

c′′ d′′

)
∈M2 arbitraire. On a((

a b
c d

)
+

(
a′ b′

c′ d′

))
+

(
a′′ b′′

c′′ d′′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
+

(
a′′ b′′

c′′ d′′

)

=

(
(a+ a′) + a′′ (b+ b′) + b′′

(c+ c′) + c′′ (d+ d′) + d′′

)
=

(
a+ a′ + a′′ b+ b′ + b′′

c+ c′ + c′′ d+ d′ + d′′

)
=

(
a+ (a′ + a′′) b+ (b′ + b′′)
c+ (c′ + c′′) d+ (d′ + d′′)

)
= . . . =

(
a b
c d

)
+

((
a′ b′

c′ d′

)
+

(
a′′ b′′

c′′ d′′

))
Ici on a utilisé l’associativité de + dans A.



— Commutativité : Soient

(
a b
c d

)
,

(
a b′

c′ d′

)
∈M2. On a

(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
=

(
a′ + a b′ + b
c′ + c d′ + d

)
=

(
a′ b′

c′ d′

)
+

(
a b
c d

)
Ici on a utilisé la commutativité de + dans A.

Maintenant il reste à verifier l’associativité et la neutralité de × ainsi que la
distributivité de + et de × pour prouver que M2 est un anneau.

— Neutralité de Id2 : Soit

(
a b
c d

)
∈M2 arbitraire. On a

(
1A 0A
0A 1A

)
×

(
a b
c d

)
=

(
1Aa+ 0Ac 1Ab+ 0Ad
0Aa+ 1Ac 0Ab+ 1Ad

)
=

(
a b
c d

)

=

(
1Aa+ 0Ab 0Aa+ 1Ab
1Ac+ 0Ad 0Ac+ 1Ad

)
=

(
a b
c d

)
×

(
1A 0A
0A 1A

)
Ici on a utilisé la neutralité de 1A dans A.

— Associativité de la multiplication : Soient

(
a b
c d

)
,

(
a b′

c′ d′

)
,

(
a′′ b′′

c′′ d′′

)
∈

M2 arbitraire. On a

((
a b
c d

)
×

(
a′ b′

c′ d′

))
×
(
a′′ b′′

c′′ d′′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
×
(
a′′ b′′

c′′ d′′

)

=

(
(aa′ + bc′)a′′ + (ab′ + bd′)c′′ (aa′ + bc′)b′′ + (ab′ + bd′)d′′

(ca′ + dc′)a′′ + (cb′ + dd′)c′′ (ca′ + dc′)b′′ + (cb′ + dd′)d′′

)
=

(
a(a′a′′ + b′c′′) + b(c′a′′ + d′c′′) a(a′b′′ + b′d′′) + b(c′b′′ + d′d′′)
c(a′a′′ + b′c′′) + d(c′a′′ + d′c′′) c(a′b′′ + b′d′′) + d(c′b′′ + d′d′′)

)

=

(
a b
c d

)
×
(
a′a′′ + b′c′′ a′b′′ + b′d′′

c′a′′ + d′c′′ c′b′′ + d′d′′

)
=

(
a b
c d

)
×
((

a′ b′

c′ d′

)
×
(
a′′ b′′

c′′ d′′

))
Ici on a utilisé l’associativité de × dans A.

— Distributivité : Soient

(
a b
c d

)
,

(
a b′

c′ d′

)
,

(
a′′ b′′

c′′ d′′

)
∈M2 arbitraire. On a

(
a b
c d

)
×

((
a′ b′

c′ d′

)
+

(
a′′ b′′

c′′ d′′

))
=

(
a b
c d

)
×
(
a′ + a′′ b′ + b′′

c′ + c′′ d′ + d′′

)



=

(
a(a′ + a′′) + b(c′ + c′′) a(b′ + b′′) + b(d′ + d′′)
c(a′ + a′′) + d(c′ + c′′) c(b′ + b′′) + d(d′ + d′′)

)
=

(
aa′ + bc′ + aa′′ + bc′′ ab′ + bd′ + ab′′ + bd′′

ca′ + dc′ + ca′′ + dc′′ cb′ + dd′ + cb′′ + dd′′

)
=

(
a b
c d

)
×
(
a′ b′

c′ d′

)
+

(
a b
c d

)
×
(
a′′ b′′

c′′ d′′

)

et de maniére similaire on obtient((
a b
c d

)
+

(
a′ b′

c′ d′

))
×
(
a′′ b′′

c′′ d′′

)
=

(
a b
c d

)
×
(
a′′ b′′

c′′ d′′

)
+

(
a′ b′

c′ d′

)
×
(
a′′ b′′

c′′ d′′

)
.

2. Montrons que l’ensemble des matrices triangulaires superieures

Tsup,2(A) = {
(
a b
0 d

)
, a, b, d ∈ A} ⊂M2(A)

est un sous-anneau.

On a clairement que 0, 1 ∈ Tsup,2(A). Soit

(
a b
0 c

)
et

(
x y
0 z

)
deux matrices

arbitraires dans Tsup,2(A). Alors −
(
a b
0 c

)
=

(
−a −b
0 −c

)
∈ Tsup,2(A),

(
a b
0 c

)
+(

x y
0 z

)
=

(
a+ x b+ y
0 c+ z

)
∈ Tsup,2(A), et pour finir,

(
a b
0 c

)(
x y
0 z

)
=

(
ax ay + bz
0 cz

)
∈

Tsup,2(A), nous permettant de conclure.

3. Pour prouver que M2 est non commutatif dans le cas oú 0A ̸= 1A, il suffit de
calculer(
1A 1A
0A 1A

)
×
(
1A 0A
1A 1A

)
=

(
1A + 1A 1A

1A 1A

)
̸=

(
1A 1A
1A 1A + 1A

)
=

(
1A 0A
1A 1A

)
×
(
1A 1A
0A 1A

)
.

Si 0A = 1A on a 02 = Id2 et M2 ne posséde qu’un seul élément. Ainsi dans ce
cas, M2 est commutatif.

Exercice 7. Soit (A,+, ., 0A, 1A) un anneau . On a dit qu’un element a ∈ A est
inversible a gauche (resp. a droite) si il existe b ∈ A (resp. c ∈ A) tel que

b.a = 1A (resp. a.c = 1A).

On dit que b est un inverse a gauche (resp. c est un inverse a droite)



1. On suppose que a est inversible a gauche ET inversible a droite (avec des inverses
a gauche et a droite notes respectivement b et c). Montrons qu’alors

b = c

de sorte que a est inversible au sens du cours (les inverses a droite et a gauche
etant les memes). On a :

a.b.a = a.c.a =⇒ a.(b− c).a = 0 =⇒ b.a.(b− c).a.c = b.0.c =⇒ b− c = 0

, nous permettant de conclure.

2. On va maintenant donner un exemple d’un anneau possedant un element in-
versible a gauche mais qui n’est pas inversible a droite. Soit F(Z,Z) l’ensemble
des fonctions (toutes les fonctions, par seulement les morphismes de groupes)
de Z sur Z. Alors avec l’addition et la composition des fonctions, on obtient un
anneau

(F(Z,Z),+, ◦, 0, IdZ)

Remarque. Dans cet exercice la ”multiplication” est la composition des fonc-
tions pas la multiplication sur les fonctions induite par la multiplication dans
Z.

En particulier l’anneau etudie ici est non commutatif.

(a) On considere la fonction de doublement

D :
Z 7→ Z
n 7→ D(n) = 2n

.

Soit [•] : R 7→ Z la fonction partie entiere ([x] est le plus grand entier
inferieur ou egal a x). Montrer que la fonction

H := [
•
2
] : n ∈ Z 7→ [

n

2
] ∈ Z

est un inverse a gauche deD. On rappelle que l’element neutre multiplicatif
est l’identite sur Z. Calculons donc la composition. Soit n ∈ Z.

H ◦D(n) = [
2n

2
] = [n] = n.

Nous pouvons donc conclure.

(b) Montrons que D n’admet pas d’inverse a droite : il n’existe pas de H ′ :
Z 7→ Z telle que

D ◦H ′ = IdZ.

Supposons par l’absurde qu’une telle fonction existe. Cela impliquerai que
D ◦H ′ est surjective, et donc, que D est surjective, or 1 ̸∈ im(D).
Un autre argument aurait pu etre fait en justifiant, par unicite de l’inverse,
que H ′ = H mais que D ◦H(1) = D(0) = 0 ̸= 1.


