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Algebre Lineaire Avancee, MATH-110

Série H

Exercice 1. 1. Si ¢"Y({h}) est vide, alors nous n’avons rien faire, supposons
donc qu’il existe gy € G tel que ¢(gy) = h c'est a dire : go € PV ({h}) et
montrons que

PV ({h}) = go x kex(p)

— Tout d’abord on observe que Vg € go * ker(yp), il existe un k € ker(y) tel
que g = go * k, ainsi en utilisant le fait que ¢ est un morphisme de groupe,
on obtient :

p(g) = ¢(go* k) = d(go) - (k) =h-en =h

Donc g € =Y ({h}) et par consequent oV ({h}) D go * ker(p).
— Maintenant prenons g € ¢~V ({h}), on peut ecrire g = ¢, xg = goxgl Vg
et on voit que g(()_l) * g appartient a ker ¢, en effet :

o(g5 % 9) = (g5 - 0(9) = (90) TV - 0(g) = AV - h = ey

("1 4 g est bien un element de goxker (i), ainsi =1 ({n}) C

Donc g = go*g
g0 * ker(p)
Par double inclusion, on a bien montre que (=1 ({h}) = g x ker(¢).

2. — Tout d’abord on observe que Vg € ker(p) x go, il existe un k € ker(yp) tel
que g = k x gg, on retrouve ainsi :

©(g) = o(k) - o(go) =h-em=h

Donc g € =Y ({h}) et par consequent =Y ({h}) D ker(y) * go.

—  Maintenant prenons g € (=Y ({h}),cette fois-ci en ecrivant g = gxg5 Y xgo
on a egalement :

plgxgs ) =¢lg)-wlgs ) =h-hY = ey
Donc g est bien un element de ker(p) * go, ainsi ¢~V ({h}) C ker(¢) x go

Par double inclusion, on a bien montre que (=" ({h}) = ker() * go.



3. On a montre au point 1. et 2. que si gy € =Y ({h}) alors on a bien que :

o ({h}) = gox ker(p) = o~ ({h}) = ker(p) * go

Maintenant, si go & ("Y({h}), alors il existe un A" € H tel que ¢(go) = b’ # h.
Si on considere g = goxeg € goxker ¢ (car eg est toujours un element du ker) on
aque g = go ¢ oY ({h}) donc les egalite precedantes ne sont pas respectees.
Ainsi I'ensemble de tous les gy € G respectant les proprietes demandees est

oD ({h}).

Action de groupes

Soit X un ensemble, G un groupe et soit G ~ X une action a gauche de G sur X.
On representera (comme on prefere) cette action, soit sous la forme d’un morphisme

¢ : G — Bij(X),
soit sous la forme d’une loi de composition externe
©:(gr) eEGXX—goreX

verifiant les proprietes convenables.

Exercice 2. Soit x € X, la G-orbite de x est le sous-ensemble des transformes de x
par les elements de G :

Gorx={goz, ge G} CX.
On dit que 2’ est dans la G-orbite de x ssi
il existe g € G, tel que ' = g ® (= ¢(g)(x))

ou en d’autre termes ssi

v e=Gor (=p(G) ().

On note cette relation
' ~o

1. On note par R C X x X la relation
R={(z,2)e X x X :3g€ Gz’ = p(g9)(x)}.

et on verifie que c’est bien une relation d’ equivalence :



— Reflexivité : Soit z € X. Comme ¢ : G — Bij(X) est un morphisme, on a
¢(eq) = Idx, Donc
v = dx(x) = plea) (@)
et donc (z,x) € R.
— Symmetrie : Soit (z,2") € R. Donc il existe par définition g € G tel que
' = p(g)(x). Par conséquent

z=pleq)(x) = olg ' g)(x) = (plg™") o p(9))(x)
= (g7 ) (e(g9)(@) = e(g~")(a")

et donc (2/,x) € R.
— Transitivité : Soit (z,2’), (z',2”) € R. Par conséquent il existe g,¢9' € G
tel que 2’ = p(g)(z) et 2" = p(¢’)(2’). On déduit

Ainsi R est bien une relation d’ equivalence.
2. Soit z € X, on va montrer que G, = {g € G, ¢(g9)(x) =gOzx =2z} C G est un
sous-groupe de G :
— D’abord, on voit que G, n’est pas vide, en effet, eq € G, car Yy € X, on
a p(eq)(y) = Idx(y) = y en particulierp(g)(z) = =.
— Soient g, h € G, alors :

(g h)(r) = w(g) op(h)(z) = p(g)(r) =2

Donc g x h € G,. (On a utilise dans la premiere egalite le fait que ¢ est
un morphisme, dans la deuxieme, le fait que h € G, et dans la derniere le
fait que g € G,.)

— Soit g € G, alors comme ¢(g) € Bij(X) et que ¢ est un morphisme , on
a que p(g7 V) 0 p(g) = p(9)Ve(g) = Idx, ainsi :

0" N (@) = o(g")e(9)(z) = ldx(z) = =

Donc ¢©V € G,.
Ainsi on a montre que GG, est bien un sous groupe de G.

3. Soient z,z’ € X tel que z, 2’ € G ®y, ainsi, comme R est une relation d’equiva-
lence, on peut supposer sans perte de generalite que 2’ € G ® x ainsi, il existe
g € G tel que 2/ = p(g)(x) =g O x.



— Soit h € Gy, i-e ¢(h)(2") = 2, alors on peut ecrire h = gxg™Yxhxgxg(~Y,

1

montrons que ¢’ = ¢V xhxg € G, ainsi on aura h = gx ¢’ x gV €

gx Gy x gt

p(gxhxg) () = (g )op(R)op(g)(x) = (g™ )op(h)(a') = (g V)(a') =«

On a donc bien que ¢’ = ¢ Yxhxg € G,. ( La derniere egalite viens du fait
que ¢(g) est une bijection tel que ¢(g)(z) = 2’, ainsi comme ¢(g(~Y) =

©(g)~Y est son inverse, on a bien que ¢(g("Y)(2) = z.)
On vient de montrer que Gy C gx Gy x gt Y.
— Soit h=g*h x¢g") € gx Gy gV, i-e ¥ € G,, montrons que h € G, :

p(h)(z') = ¢(g) o p(h) 0 (g™ (a') = ¢lg) o p(W)(z) = (g)(x) = 2’

Ainsi on a On vient de montrer que Gy D g% Gy + gt Y.

Par double inclusion on a bien que G = g x G, x g"=Y.

4. On ecrit
(1234567
T\3 75614 2
Calculons donc l'orde o :
(1234567 (123456 7_
“\3 756142 3756142
(1234567
“\5 214367
s_(1234567) (123456 7_
“\3 756142 59214367
(1234567
“\1 7365 42
(1234567 (123456 7_
“\3 756142 1736542
(1234567
“\3 254167
s (1234567 (123456T7)_
=3 75614 2 395416 7))
(1234567
“\5 716 3 4 2
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Ainsi n, = 6.
5. On remarque que 'on peut decomposer o en trois cycles oy, g9, 03 tel que si on
ecrit D; = {x € X;0;(x) # x} pour i = 1,2,3 alors on a que Dy, Dy et D3 sont

deux a deux disjoints, en effet :
7 5 6 7 5
7 6 2

G(1) = G(3) = GG5) = {o"(1);in = 1,..,5} = {1,3,5})

1

o 2934 5 4
T=01°02°03 = {3 9 5 4 1 4

(@) BN e

1 3 ) 1234567
1 3 5 1236547

2
7

Ainsi on peut facilement voir que

G2)=G(7) = {0"2);n=1,...5} = {2,7}
G(4) = G(6) = {o"(4);n =1,....5} = {4,6}

Ou G(i) avec i € X est l'orbite de i. Cela nous donne donc la decomposition
suivante de X = G(1) UG(2) UG(4)

6. En reprenant nos calcul de la question 4, on trouve que
G1 = G3 = G5 = {Id,0'3}
G2 = G7 = {Id, 0'270'4}
G4 = GG = {Id, 0'2,0'4}
Ainsi on an; =2 et ng =ny =3 ou n; est 'ordre de G, i =1,2,...,7.

Exercice 3. 1. On commence par montrer que ¢, est bien definie c’est a dire que
pour tout g € G I'application t, est bien une bijection. Soit hy, hy € G tel que
tg(h1) = t4(hy). Alors on a

hl = g(il).g.hl = gil.tg(hl) = gil.tg<h2) = gil.g.hg = hQ,

ce qui montre l'injectivité de 2.



Soit h € G arbitraire. Donc

h=g.(g7"h) = t,(g~" )

ce qui montre la surjectivité de ¢,.

Comme g € G ést arbitraire, on en déduit que pour tout g € G 'application %,
est une bijection. Montrons maintenant que ¢, est un morphisme de groupe :
Soient g, h, € G. On veut montrer que e t,, = t4 o t;,. Pour cela, on considere
x € G quelconque et grace a ’associativité de la composition interne dans G,
on a :

ton(®) = (g.h).x = g.(h.a) = ty(ha) = ty(tn(z)) = (ty 0 tn)(z).

Comme z € G ést arbitraire, on en déduit que t,5 = t, 0 t,. On en déduit que
e est un morphisme.

2. Soit g € G tel que t, = Idg. Donc
= g.eq = t,(eq) = 1d(eq) = eq

Donc on a montré que ker(t,) C {ec}. Comme t, est un morphisme, sait que
te, = Idg et on déduit que ker(t,) = {eq} et donc que ¢, est bien injectif.

Exercice 4. On rappelle que si ¢ : G — H et ¢’ : H — K deux morphismes de
groupes bijectif , alors =Y : H — G et ¢/ 01 : G — K sont aussi des morphismes
de groupes bijectifs.

1. Montrons que ~ est une relation d’equivalence :

(a) Reflexivite : Pour un groupe G on a G ~ G en considerant I'isomorphisme
Idg : G — G.

(b) Symetrie : Soient GG, H deux groupes tel que G ~ H donc il existe ¢ : G —
H un isomorphisme, comme 1) est un isomorphisme, on peut considerer
Y=Y H — G qui est aussi un isomorphisme et ainsi, on a bien H ~ G.

(¢) Transitivite : Soient G, H, K trois groupes, tel que G ~ H et H ~ K via
Y : G — Hety' : H— K respectivement, alors comme ¢’ o) : G — K
est aussi un isomorphisme, on a bien G ~ K.

2. On pose :
6 : Aute,(G) — Bij(Isomg, (G, H))
O 0, :Isome, (G, H) — Isome, (G, H)
v 8= Yoy
Et on verifie que cela definie une action a droite :
(a) Neutralite : Pour tout ¢ € Isomg, (G, H), on a bien 014, (¢) = ¢poldg = ¢



(b) Associativite : Soient o1, s € Aute,(G), et ¢ € Isomg, (G, H), on a bien :
ewlom(w) = opropy = 9@2 <¢ © 901) = 9@2 © 9@1<¢)
(c) Simplification : Soient ¢ € Autg,(G), et 1 € Isomg, (G, H), on a bien :

00,0 (1) =o' ™Nop=1p=1popop™ =0 1(0,))

C’est donc bien une action a droite.
On observe que pour G un groupe et X un ensemble tel que a : G — Bij(X)
est une action a droite de G sur X, alors si on definie a(~") comme suivant :

oV G = Bij(X)
g— a (g : X=X
z = aV(g)(2) = a(g"V)(x)

Alors a(™Y est une action a gauche de G sur X, en effet :

(a) Neutralite : Pour tout z € X : a(™Y(eg)(z) = a(e(_l))(x) = aleg)(x) = x.

(b) Associativite : Soient g,¢' € G et x € X, alors en utilisant le fait que «
est une action a droite, on obtient :

o (g.9)(x) = a((g.9) ) (@) = a((¢)M.g" V) (2) =

a(g) o a((g) V) (x) =
o™V (g) 0 a"V(g') ()
(¢) Simplification : Soient g, € G et x € X, alors en utilisant le fait que « est

une action a droite, on obtient facilement que la simplification est aussi
satisfaite !

On peut aussi montrer que si « est une action a gauche, alors a1 est une
action a droite. Ainsi dans notre cas, #(~1 est une action a gauche de Aute,(G)
sur Isomg, (G, H). Cette action est definie pour tout ¢ € Autg,.(G), et ¢ €
Isome, (G, H) comme 0V (p) (1)) = 1 o V).

3. On pose :
6 : Aute,(H) — Bij(Isomg, (G, H))
O —> 0, :Isome, (G, H) — Isomg, (G, H)
¢ = 030 =@o ¢



et

oY . Autg, (H) — Bij(Isomg, (G, H))
o —> pr_l) :Isome, (G, H) — Isome, (G, H)
-1 -1
" o 00D = oD oy

On peut verifie de la meme maniere qu’au point precedant que 6 est une action
gauche et que par consequent 61 est une action a droite.
4. Soit ¢ € Isomg, (G, H) un isomorphisme. on va montrer que

Isomeg, (G, H) = 1 o Aut,(G) = Autg,(H) o9

En procedant par double inclusion.

D’abord, on observe que comme 1 € Isomg, (G, H), alors trivialement on a

que ¢ o Autg,(G) C Isomg, (G, H) et Autg,.(H) o ¢ C Isomeg, (G, H) car la

composition de deux isomorphisme de groupe est toujours un isomorphisme de

groupes. Ensuite nous avons :

(a) Isomg, (G, H) C voAutg,(G) : Soit ¢ € Isomg, (G, H) alors, ¢ = 1poh~Vo
¢ et on a bien ¥("Y o ¢ € Autg,(G) donc ¢ = o)™ og € hoAute, (G).
Ce qui montre que

IsomGr(G, H) Cqoo AutGT(G)

(b) Isome, (G, H) C Autg,(H)ot : Soit ¢ € Isome, (G, H) alors, ¢ = ¢op(~Yo
v et on a bien pop(™Y € Autg,(H) donc ¢ = oy op € Aute,(H)o.
Ce qui montre que

Isome, (G, H) C Autg,(H) o9

Ce qui montre bien les egalites voules.

Premiers exercices sur les anneaux

Exercice 5. 1. Montrons que les seuls sous-anneaux de Z sont {0} ou Z.
Fixons A un sous-anneau non-nul de Z. Comme, A est non nul, par definition,
1 € A, et donc, vu que A est un sous-groupe additif de Z, il contient le sous-
groupe genere par 1, qui est donc Z.
2. Montrons que les seuls anneaux de Z/qZ sont {0 (mod q)} et Z/qZ.

Fixons A un sous-anneau non-nul de Z/¢Z. Comme, A est non nul, par defini-
tion, 1 (modq) € A, et donc, vu que A est un sous-groupe additif de Z/qZ, il
contient le sous-groupe genere par 1 (mod q), qui est donc Z/qZ.



Exercice 6. Soit A un anneau commutatif. Soit ’ensemble

Ma(A) :{(Z Z) ab,c.de A}

des matrices 2 x 2 a coefficients dans A. On muni cet ensemble des lois d’addition et
de multiplication des matrices

a b n a b\  [(a+d b4V a b a v\  [ad +bd ab +bd
c d d d)]  \Ne+cd d+d)’ \c d) \d d) \ecd +dd cb+dd

1. Verifions que M5(A) est un anneau d’element nul la matrice nulle
Oor v — 04 0a
2(A) 04 04
et d’unite la matrice identite
(14 04
= (g 1)

En premier on montre que (Ms(A), +,02) est un groupe commutatif.

— Neutralité de 05 : Soit ((Z z) € M, arbitraire. On a

04 04 i a b 04+a 04+0b a b _fa b I 04 04
04 0y c d 04 +c 04+d c d) \c d 04 0y
Ici on a utilisé la neutralité de 04 dans A.

— Inversibilité : Soit (OCL Z) € M, arbitraire. L’inverse est (:Ccl :Z) e M,
car

—a—b+ab_—a+a—b—|—b OAOA_ab+—a—b
—c —d c d)] \—c+c —d+d 04 04) \c d —c —d
Ici on a utilisé l'inversiblilité de + dans A

/!

— Associativité : Soient (Q ) , (z ) ( Z,,) € M, arbitraire. On a

c
a b n a v a” b a+d b+Y n a’ b
c d cd d A d" c+cd d+d A d’
B (a+a) // (b_|_b/ +b// a+a/+a// b+b/_|_b//
- (C+C) // (d—|—d/ d// C—|—C/+C” d+d/+d//
)

B a + (a + al/ b + (b/ b// B b/ + a// b/l
- c + (C + C//) d + (d/ d// - C/ d/ C// dl/

Ici on a utilisé 'associativité de 4+ dans A



/
— Commutativité : Soient (Z Z) , (z, 2,) € Ms. On a

a b n a b\ [(a+d b+V\ (d+a V+b\ [d V n a b
c d d d)] \Ne+cd d+d) \d+c d+d)] \d d c d
Ici on a utilisé la commutativité de 4+ dans A.

Maintenant il reste a verifier I’associativité et la neutralité de x ainsi que la
distributivité de 4+ et de x pour prouver que Ms est un anneau.

— Neutralité de Ids : Soit <CCL Z) € My arbitraire. On a
14 0y y a b _ (laa+04c 1464 04d _(a b
04 14 c d) Oga +1ac 046+ 14d ~\c d

. laa+04b 04a+ 140 _(a b « 14 0y
- \lac+04d Oyuc+14d)  \c d 04 14
Ici on a utilisé la neutralité de 14 dans A.

/ " /!
— Associativité de la multiplication : Soient <CCL 2) , (ZL, 2,) , (c” Z,,) €

My arbitraire. On a

b » a o a” v\  [ad +bc ab +bd o a” b
d ' d") \ca +dd cb +dd A d’

(ad’ + bcd)a" + (ab + bd' )" (ad’ + b )" + (abl + bd’)d”)

(ca' +dc)a" + (b + dd' )" (ca’ + d )" + (b + dd')d”

+(
+(
a( / /l+b/ l/) ( / //+dl /l) a(a/b//+b/d//) +b(clb//+d/d//)
C(a/a//+b/ /l) (Cla// +dl //) C(a/b// +b/d//) +d(clb// +d/d//)

a b "WV dY + YA a b a b a’ b
= (C d) X <c’a” +ddd Y+ d/d//> = (C d) X <(Cl d/) X (C// d//))
Ici on a utilisé l’associativite de x dans A.

e . a a b’ b o
— Distributivité : Soient . A Z € M, arbitraire. On a

a b » a b n a’ b _fa b » a+ad b+
c d C/ d/ C” d// - c d C, + C/l d/ + d//



c(a'+a”) +d(cl+cll) C(b/+b//) +d(d/+d//)

_ (ad +bc +aad” + b ab + bd' + ab” + bd"
~ \ed +dd +ca” +dd’ b +dd + b + dd”

a b a v a b a” b
“\e d x cd d + c d x A d"’
et de maniére similaire on obtient

a b + a/ bl " a/l bl/ B a b " a// b// + al bl " a// b//
c d C/ d/ C// d// - c d c// dl/ C/ d/ C// dl/ :

2. Montrons que I'ensemble des matrices triangulaires superieures

_ (a(a’ +a") £ b( A+ ) altl + )+ b(d + d”))

Tonald) = () 3) abd e 4} € 4)
est un sous-anneau.

On a clairement que 0,1 € Ty,p2(A). Soit <g g) et a: g deux matrices

0
o a b —a —b a b
arbitraires dans Tyup2(A). Alors — 0 /=0 _¢)€ Toup2(A4), 0 o)t

r y\ f(a+z bty . (a b\ (x y\ (ar ay+bz
(0 z)_< 0 c+z> € Taup2(A), et pour finir, <0 c) (0 z>_(0 cz <

Tiup2(A), nous permettant de conclure.

3. Pour prouver que M, est non commutatif dans le cas ot 04 # 14, il suffit de
calculer

14 14 y 14 0y _ 1a+14 14 # 14 14 _ 14 04 y 14 14
04 14 14 14 14 14 14 14+14 14 14 04 14/)°

Si 04 =14 0n a0y = Idy et My ne posséde qu’un seul élément. Ainsi dans ce
cas, M, est commutatif.

Exercice 7. Soit (A, +,.,04,14) un anneau . On a dit qu'un element a € A est
inversible a gauche (resp. a droite) si il existe b € A (resp. ¢ € A) tel que

b.a =14 (resp. a.c =1,).

On dit que b est un inverse a gauche (resp. ¢ est un inverse a droite)



1.

On suppose que a est inversible a gauche ET inversible a droite (avec des inverses
a gauche et a droite notes respectivement b et ¢). Montrons qu’alors

b=c

de sorte que a est inversible au sens du cours (les inverses a droite et a gauche
etant les memes). On a :

aba=aca = a(b—c)la=0 = b.a.(b—c)ac=00c = b—c=0

, nous permettant de conclure.

On va maintenant donner un exemple d'un anneau possedant un element in-
versible a gauche mais qui n’est pas inversible a droite. Soit F(Z,Z) I’ensemble
des fonctions (toutes les fonctions, par seulement les morphismes de groupes)
de Z sur 7Z. Alors avec ’addition et la composition des fonctions, on obtient un
anneau

(F(Z,Z),4+,0,0,1dy)
Remarque. Dans cet exercice la "multiplication” est la composition des fonc-

tions pas la multiplication sur les fonctions induite par la multiplication dans
Z.

En particulier 'anneau etudie ici est non commutatif.

(a) On considere la fonction de doublement

7 Z
‘n — D(n)=2n

Soit [e] : R +— Z la fonction partie entiere ([x] est le plus grand entier
inferieur ou egal a x). Montrer que la fonction

H::[;]:TLGZ&—)[%]EZ

est un inverse a gauche de D. On rappelle que I’element neutre multiplicatif
est identite sur Z. Calculons donc la composition. Soit n € Z.
2n

HoD(n):[2

| =[n] =n.

Nous pouvons donc conclure.
(b) Montrons que D n’admet pas d’inverse a droite : il n’existe pas de H' :
7 — 7. telle que
Do H =1dj.

Supposons par I'absurde qu’une telle fonction existe. Cela impliquerai que
D o H' est surjective, et donc, que D est surjective, or 1 & im(D).

Un autre argument aurait pu etre fait en justifiant, par unicite de I'inverse,
que H' = H mais que Do H(1) = D(0) =0 # 1.



